Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.10.07.511313

ABSTRACT

ABSTRACT Chronic lung disease is often accompanied by disabling extrapulmonary symptoms, notably skeletal muscle dysfunction and atrophy. Moreover, the severity of respiratory symptoms correlates with decreased muscle mass and in turn lowered physical activity and survival rates. Previous models of muscle atrophy in chronic lung disease often modeled COPD and relied on cigarette smoke exposure and LPS-stimulation, but these conditions independently affect skeletal muscle even without accompanying lung disease. Moreover, there is an emerging and pressing need to understand the extrapulmonary manifestations of long-term post-viral lung disease (PVLD) as found in Covid-19. Here, we examine the development of skeletal muscle dysfunction in the setting of chronic pulmonary disease using a mouse model of PVLD caused by infection due to the natural pathogen Sendai virus. We identify a significant decrease in myofiber size when PVLD is maximal at 49 d after infection. We find no change in the relative types of myofibers, but the greatest decrease in fiber size is localized to fast-twitch type IIB myofibers based on myosin heavy chain immunostaining. Remarkably, all biomarkers of myocyte protein synthesis and degradation (total RNA, ribosomal abundance, and ubiquitin-proteasome expression) were stable throughout the acute infectious illness and chronic post-viral disease process. Together, the results demonstrate a distinct pattern of skeletal muscle dysfunction in a mouse model of long-term PVLD. The findings thereby provide new insight into prolonged limitations in exercise capacity in patients with chronic lung disease after viral infections and perhaps other types of lung injury.


Subject(s)
Lung Diseases , Pulmonary Disease, Chronic Obstructive , Muscular Atrophy , Lung Injury , Muscular Diseases , Chronic Disease , COVID-19 , Atrophy
2.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.09.17.22280043

ABSTRACT

Respiratory viruses, including SARS-CoV-2, can trigger chronic lung disease that persists and even progresses after expected clearance of infectious virus. To gain an understanding of this process, we examined a series of consecutive fatal cases of Covid-19 that came to autopsy at 27-51 d after hospital admission. In each patient, we identify a stereotyped bronchiolar-alveolar pattern of lung remodeling with basal epithelial cell hyperplasia and mucinous differentiation. Remodeling regions also feature macrophage infiltration and apoptosis and a marked depletion of alveolar type 1 and 2 epithelial cells. This entire pattern closely resembles findings from an experimental model of post-viral lung disease that requires basal-epithelial stem cell growth, immune activation, and differentiation. The present results thereby provide evidence of possible basal epithelial cell reprogramming in long-term Covid-19 as well and thereby a pathway for explaining and correcting lung dysfunction in this type of disease.


Subject(s)
COVID-19 , Carcinoma, Basal Cell , Lung Diseases , Adenocarcinoma, Bronchiolo-Alveolar
SELECTION OF CITATIONS
SEARCH DETAIL